Synthetic Biology Resources at Cambridge

Compiled by Jim Haseloff at the University of Cambridge. SpannerPlantLogo140This site contains details of recent papers and activity in Synthetic Biology, with particular emphasis on: (i) development of standards in biology and DNA parts, (ii) microbial and (iii) plant systems, (iv) research and teaching in the field at the University of Cambridge, (v) hardware for scientific computing and instrumentation, (vi) tools for scientific productivity and collected miscellany.

Similar to the Cambridge-based Raspberry Pi and OpenLabTools initiatives, we promote the use of low cost and open source tools - in our case for use in biological engineering.

Google: synbio news

Run mouse over list to see previews, click for full article.

Twitter Feed

Recent News

IMAGE A Mitochondrial DNA Transplant Could Help Treat Hundreds Of Diseases
Thursday, 08 January 2015
For the first time ever, researchers in New Zealand have shown that mitochondrial DNA can move between cells in an animal tumor. It's an extraordinary finding that could lead to an entirely new field of synthetic biology and the treatment of hundreds of diseases. Read more... Read More...
IMAGE Impossibly imaginative food landscapes. Warning: don't look if hungry.
Thursday, 08 January 2015
" 'Processed Views,' a photography series by Barbara Ciurej and Lindsay Lochman.   From the artists:   Processed Views interprets the frontier of industrial food production: the seductive and alarming intersection of nature and technology. As we move further away from the sources of our food, we... Read More...
IMAGE This tiny button could solve the IoT’s big headache
Thursday, 08 January 2015
Controlling your digital life from your smartphone, or even by voice, is great, but there are times when it'd be a whole lot more convenient to reach out and stab a physical button. That's the idea behind Flic, crowdfunding success from late last year, and here at CES to show off what you can do... Read More...
IMAGE Intel’s “Compute Stick” is a full Windows or Linux PC in an HDMI dongle
Thursday, 08 January 2015
Andrew Cunningham The Intel Compute Stick is a full PC in an HDMI dongle. 3 more images in gallery // LAS VEGAS, NEVADA—Set-top boxes and streaming sticks are decent, cost-effective ways to turn the TV you already have into a 'smart TV,' but Intel has an intriguing new option for those of you... Read More...
IMAGE A microbe found in a grassy field appears to contain a remarkably powerful antibiotic.
Thursday, 08 January 2015
A microbe found in a grassy field appears to contain a remarkably powerful antibiotic. Called teixobactin, it kills dangerous pathogens without any observable resistance (at least not yet). Moreover, it destroys many types of drug-resistant bacteria and it's safe in mammals. Its use may be limited,... Read More...
IMAGE To Save Our Ecosystems, Will We Have to Design Synthetic Creatures?
Wednesday, 07 January 2015
To Save Our Ecosystems, Will We Have to Design Synthetic Creatures?BY LIZ STINSON   Imagine someday in the distant future, years after the ‘sixth extinction’ went from theory to undeniable reality. Our ecosystems are failing, our biodiversity is dropping like flies (at least the ones that... Read More...
Synthetic Biology Market worth $5,630.4 Million by 2018 - Major Market Players - Amyris, Inc. (U.S.), DuPont (U.S.), GenScript USA Inc. (U.S.), Intrexon Corporation (U.S.) - WhaTech
Wednesday, 07 January 2015
Synthetic Biology Market worth $5,630.4 Million by 2018 - Major Market Players - Amyris, Inc. (U.S.), DuPont (U.S.), GenScript USA Inc. (U.S.), Intrexon Corporation (U.S.) WhaTech Channel: Industrial Market Research Reports The global synthetic biology market is segmented on the basis of tools,... Read More...
IMAGE 3 Tech Giants Quietly Investing in Synthetic Biology (ADSK, INTC, MSFT)
Wednesday, 07 January 2015
3 Tech Giants Quietly Investing in Synthetic Biology By Maxx Chatsko | More Articles January 7, 2015 | Comments (0) The introduction and widespread adoption of fun new gadgets, games, and services in the last 15 years has provided billions of dollars of revenues and profits to the technology... Read More...

Featured News

Folding Bluetooth Keyboard | iwerkz
Friday, 02 January 2015
Enjoy the supreme convenience and ease of portable typing with the Universal Foldable Bluetooth Keyboard. The versatile blue keyboard is compatible with a bevy of Bluetooth enabled tablets and smartphones, including iPad devices, iPhone devices, and Samsung Galaxy S devices. The keyboard features a sleek folding design that allows for the utmost in portability, and the protective shell... Read More...
Post It Labeling Tape
Saturday, 11 October 2014
I found this product over a year ago. It comes in yellow, green, pink, and white, on a dispenser similar to scotch tape. The paper feels like the same paper used for the original Post It notes, and works well with a Sharpie pen for labeling. The back of the paper is fully-covered by the adhesive (unlike Post-It notes, which have a strip of adhesive only along the top). I can label anything,... Read More...
Hugo’s Amazing Tape
Saturday, 27 September 2014
I was introduced to Hugo’s Amazing tape several years ago by a colleague. He uses the tape to keep board game boxes closed for storage, and it has quite a following in the board game and collectible card game community. The tape is flexible, reusable, and has the fantastic quality of only sticking to itself. These qualities make it ideal for securing something that you need to wrap and unwrap... Read More...

Scotland Takes On Synthetic Biology Bottlenecks

In August 2009, Scottish Enterprise invested £2.4 million to develop a solution for DNA assembly by early 2011.

Nicolas Peyret

The emerging and promising field of synthetic biology has attracted the attention of world-leading scientists for years. Simply put, synthetic biology aims to create novel biological systems and modify existing ones for useful purposes. It pushes the limits of genetic engineering by developing whole biosynthetic pathways and uses well-characterized systems to make engineering of biology easier and more reliable.

Recently, Scotland made investments to address one of the field’s major bottlenecks—DNA assembly. By understanding and harnessing the building blocks of DNA and the complex mechanisms that make up the planet’s biochemistry—from bacteria’s ability to breakdown and utilize food sources to plants’ ability to synthesize vitamins—scientists from the energy, chemicals, as well as healthcare sectors recognize an opportunity to use natural systems found in biology to solve issues of global importance.

Scotland and Synthetic Bio

Over the past few years the scientific community’s interest in synthetic biology has gained momentum. This is partly due to early successes such as the development of a biosynthetic way to produce anti-malaria drug Artemisinin, making the drug more affordable for developing countries. Much credit is also attributable to the growth of the International Genetically Engineered Machine (IGEM) competition, a global undergraduate event where student teams compete to create the best modified biological systems. Since its inception the number of teams participating in IGEM has grown from a handful in 2004 to 112 teams from 26 countries in 2009.

Scotland is a country of five million people and has 14 major universities, several of which have expertise in molecular biology, engineering, bioinformatics, and connected disciplines such as systems biology, all at the heart of synthetic biology.

The larger institutions such as the University of Edinburgh and the University of Glasgow are organizing groups of researchers from different disciplines to work in synthetic biology and developing curriculum to train students in this growing field. In smaller institutions, a number of faculties in diverse areas are actively pursuing synthetic biology research and mentoring IGEM teams.

Tackling the Challenges

To capitalize on this expertise, in 2006, Scottish Enterprise, Scotland’s economic development agency, performed an extensive market and technology analysis of the field and concluded that synthetic biology could impact multibillion-dollar markets worldwide and considerably transform sectors like energy, life sciences, and chemical sciences. It also suggested that synthetic biology would become the fastest growing segment in biotechnology, leading to significant company formation and job creation.

The research also revealed, however, that much of the transformative potential of synthetic biology was restrained by several technology barriers. These include the development of well-characterized organisms that can be easily engineered (called chassis organisms), the characterization and availability of modular components, better models for regulatory circuits, new informatics tools for design, and new methods for DNA synthesis and assembly.

In particular, assembly of DNA segments into longer fragments is central to building new biosynthetic pathways and, at the same time, represents a significant bottleneck. Current approaches are error-prone, resource- and time-intensive, and generally addressed at the individual laboratory or company level. In looking at the issue more broadly, Scottish Enterprise believed that investment focused on an intensive, short-term research program could quickly deliver a solution.

By financing and designing such a program, Scottish Enterprise hopes to accelerate the development of synthetic biology while promoting Scotland’s competitive edge in this field. After identifying interested research partners and organizing a subsequent workshop to define the scope of the program, Scottish Enterprise selected two organizations: Ginkgo Bioworks of Boston and Heriot-Watt University of Edinburgh. Ginkgo Bioworks is a start-up company founded by a team of four former MIT bioengineering students with the help of MIT’s Thomas Knight Jr., one of the fathers of synthetic biology. Ginkgo brings to the program its expertise in biological engineering and bioinformatics as well as a focus on innovative approaches for DNA assembly reactions and associated informatics design tools. Dr. Will Shu’s group at Heriot-Watt University consists of experts in microfluidic technologies and focuses on building a microfluidic platform to perform the assembly reactions developed by Ginkgo.

In August 2009, Scottish Enterprise launched the £2.4 million (roughly $3.6 million) Genome Segment Assembly (GSA) research program. Scheduled to complete in early 2011, it will deliver the microfluidic platform for assembly of DNA parts into biosynthetic pathways. The platform will afford high-throughput combinatorial assembly of large DNA segments in a fast and reliable way and will be licensed to commercial partners in Scotland and the U.S. allowing them to offer assembly services.

The Scottish licensee company will be the first firm offering this type of service in Europe, reinforcing Scotland’s position in the promising area of synthetic biology. These companies will not only satisfy a clear need felt by academic and industrial researchers but also accelerate the pace of research in synthetic biology.

Scottish Enterprise will host a panel session focusing on DNA construction at the upcoming BIO International Convention titled “From Oligos to Gene to Pathways to Genomes—New Challenges in DNA Construction for Synthetic Biology.”

Hand in hand with new technology comes a myriad of ethical, social, and policy issues, especially with a scientific discipline that deals with the repackaging of DNA from multiple organisms. Recognizing this, founders of the discipline have, from the beginning, worked closely with social scientists and ethicists to strengthen the field. Innogen, the Edinburgh-based ESRC Centre for Social and Economic Research on Innovation in Genomics, is a thought leader in this area.

The potential of synthetic biology to revolutionize many different aspects of our lives is clear. There currently exist, however, many technological roadblocks. In particular, limitations in DNA construction prevent us from fully advancing this field. Scotland is committed to overcoming these obstacles and improving DNA construction technologies so that the field of synthetic biology can realize its potential to bring about diverse and exciting commercial opportunities.

Nicolas Peyret is Technology and Markets Analyst at Scottish Enterprise. Web:www.lifesciencesscotland.com.

From: http://www.genengnews.com/specialreports/sritem.aspx?oid=78585620

Research news at Cambridge University

Run mouse over list to see previews, click for full article.

European Association of Students & Postdocs in Synthetic Biology (EUSynBioS)

EUSynBioSprelimLogo240The European Association of Students & Postdocs in Synthetic Biology (EUSynBioS) invites you to join its pre-launch community. The EUSynBioS initiative seeks to shape and foster a network of young researchers active the nascent scientific discipline of synthetic biology within the European Union by means of providing an integrative central resource for interaction and professional development.

Key objectives of EUSynBioS include i) the implementation of a central web platform for sharing news and opportunities relevant to members of the community as well as for academic networking, ii) the arrangement and support of events for academic exchange and professional development, iii) liaison with representatives of industry, and iv) establishment of a primary contact for collaboration and exchange with related communities of synthetic biology students and postdocs abroad.

Registering as a member is free and can be completed within 30 seconds via the following link http://www.eusynbios.org/students-and-postdocs/join Students and postdocs who register as a EUSynBioS member will be able to:
o Access a large network of young researchers in synthetic biology for academic collaboration and exchange
o Share technical resources and teaching materials
o Stay informed about relevant events such as conferences, workshops, or social outings o Browse relevant jobs in academia and industry
o Use site visits and mentoring opportunities to interact with prospective employers
o Connect with members of related communities all over the world

By registering as a member prior to the official launch of EUSynBioS, you will not only make a statement of support which will have an impact on the resources available to the community in the future; you will also be given the chance to actively shape EUSynBioS right from the start, and have an edge when applying for a position on the Steering Committee. We are looking forward to your joining us ! Christian Boehm, University of Cambridge.