www.synbio.org.uk

Synthetic Biology Resources at Cambridge

Compiled by Jim Haseloff at the University of Cambridge. SpannerPlantLogo140This site contains details of recent papers and activity in Synthetic Biology, with particular emphasis on: (i) development of standards in biology and DNA parts, (ii) microbial and (iii) plant systems, (iv) research and teaching in the field at the University of Cambridge, (v) hardware for scientific computing and instrumentation, (vi) tools for scientific productivity and collected miscellany.

Similar to the Cambridge-based Raspberry Pi and OpenLabTools initiatives, we promote the use of low cost and open source tools - in our case for use in biological engineering.

Google: synbio news

Run mouse over list to see previews, click for full article.

Twitter Feed

Recent News

IMAGE A Mitochondrial DNA Transplant Could Help Treat Hundreds Of Diseases
Thursday, 08 January 2015
For the first time ever, researchers in New Zealand have shown that mitochondrial DNA can move between cells in an animal tumor. It's an extraordinary finding that could lead to an entirely new field of synthetic biology and the treatment of hundreds of diseases. Read more... Read More...
IMAGE Impossibly imaginative food landscapes. Warning: don't look if hungry.
Thursday, 08 January 2015
" 'Processed Views,' a photography series by Barbara Ciurej and Lindsay Lochman.   From the artists:   Processed Views interprets the frontier of industrial food production: the seductive and alarming intersection of nature and technology. As we move further away from the sources of our food, we... Read More...
IMAGE This tiny button could solve the IoT’s big headache
Thursday, 08 January 2015
Controlling your digital life from your smartphone, or even by voice, is great, but there are times when it'd be a whole lot more convenient to reach out and stab a physical button. That's the idea behind Flic, crowdfunding success from late last year, and here at CES to show off what you can do... Read More...
IMAGE Intel’s “Compute Stick” is a full Windows or Linux PC in an HDMI dongle
Thursday, 08 January 2015
Andrew Cunningham The Intel Compute Stick is a full PC in an HDMI dongle. 3 more images in gallery // LAS VEGAS, NEVADA—Set-top boxes and streaming sticks are decent, cost-effective ways to turn the TV you already have into a 'smart TV,' but Intel has an intriguing new option for those of you... Read More...
IMAGE A microbe found in a grassy field appears to contain a remarkably powerful antibiotic.
Thursday, 08 January 2015
A microbe found in a grassy field appears to contain a remarkably powerful antibiotic. Called teixobactin, it kills dangerous pathogens without any observable resistance (at least not yet). Moreover, it destroys many types of drug-resistant bacteria and it's safe in mammals. Its use may be limited,... Read More...
IMAGE To Save Our Ecosystems, Will We Have to Design Synthetic Creatures?
Wednesday, 07 January 2015
To Save Our Ecosystems, Will We Have to Design Synthetic Creatures?BY LIZ STINSON   Imagine someday in the distant future, years after the ‘sixth extinction’ went from theory to undeniable reality. Our ecosystems are failing, our biodiversity is dropping like flies (at least the ones that... Read More...
Synthetic Biology Market worth $5,630.4 Million by 2018 - Major Market Players - Amyris, Inc. (U.S.), DuPont (U.S.), GenScript USA Inc. (U.S.), Intrexon Corporation (U.S.) - WhaTech
Wednesday, 07 January 2015
Synthetic Biology Market worth $5,630.4 Million by 2018 - Major Market Players - Amyris, Inc. (U.S.), DuPont (U.S.), GenScript USA Inc. (U.S.), Intrexon Corporation (U.S.) WhaTech Channel: Industrial Market Research Reports The global synthetic biology market is segmented on the basis of tools,... Read More...
IMAGE 3 Tech Giants Quietly Investing in Synthetic Biology (ADSK, INTC, MSFT)
Wednesday, 07 January 2015
3 Tech Giants Quietly Investing in Synthetic Biology By Maxx Chatsko | More Articles January 7, 2015 | Comments (0) The introduction and widespread adoption of fun new gadgets, games, and services in the last 15 years has provided billions of dollars of revenues and profits to the technology... Read More...

Featured News

Test intro
Thursday, 03 October 2013
This is a test title for the showcase of a Joomla page 
Blank article
Sunday, 15 September 2013
 
makespace Cambridge
Saturday, 27 April 2013
makespace.org Makespace is a community workshop in Cambridge for making things, meeting people, working on projects and learning new things. 

New Synthetic Biology competitions

Synthetic-biology competition launches

Genome-design contest aims to engineer cress for commercial uses.

Thale cressThale cress could be genetically redesigned to munch air pollutants.A. Jagel/Blickwinkel/Still Pictures

A Japanese competition launched last week is aiming to help the burgeoning science of synthetic biology to deliver commercial applications.

Last month's unveiling of the first fully functioning cell with a synthetic genome (see 'Researchers start up cell with synthetic genome') marked a milestone in scientists' ability to manipulate the code of life. But efforts to engineer specific genetic sequences and integrate them with bacteria or plant genomes so that they perform useful functions have faced a variety of hurdles.

These genetic sequences can give the host organisms the ability to make proteins with useful properties: producing useful chemicals such as biofuels or drugs; acting as biochemical sensors; or breaking down environmental pollutants, for example. But when these genes are integrated into living cells, they are often frustratingly unpredictable and sometimes incompatible with the host organism (see 'Five hard truths for synthetic biology').

The International Rational Genome-Design Contest (GenoCon), launched by the Yokohama-based Bioinformatics and Systems Engineering (BASE) division of Japan's RIKEN research institute, is now hoping that its participants will optimize genetic sequences so that they can be used practically. No prize money has been offered; honour, it seems, should be sufficient reward.

The inaugural challenge asks contestants to genetically redesign thale cress (Arabidopsis thaliana) so that it can metabolize the airborne pollutant formaldehyde. Researchers have previously inserted genes into thale cress that give it a limited ability to absorb formaldehyde, and GenoCon's goal is to improve on this.

Commercial tack

GenoCon is not the first synthetic biology contest. Since 2004, the annual International Genetically Engineered Machine (iGEM) competition, run by the Massachusetts Institute of Technology, Cambridge, has asked teams of undergraduates to use genetic components that give bacteria novel features. In the past, contestants have produced microbes that act as biosensors for arsenic; or that smell of bananas or wintergreen; or that come in a rainbow of different hues.

Many of the genetic parts that confer these properties are developed anew by competitors, and must be registered in a growing, open-access repository.

But GenoCon is taking a different tack. Whereas iGEM's participants get to choose how they transform bacteria, GenoCon will focus on specific challenges that have a clear environmental application. BASE director Tetsuro Toyoda hopes that this will spark wider interest among scientists, the public and industry, and prove the value of synthetic biology to funders.

The competition also hopes to attract researchers familiar with bioinformatics who perhaps lack the experimental resources to build what they design. Participants have until the end of September to assemble genetic code — within a 'virtual laboratory' on BASE's website — that will make thale cress an effective formaldehyde detoxifier. Judges will pick the most promising 20 or 30 sequences, which RIKEN and affiliated research institutes will use to create plants with the given sequences integrated into the cress genome. The plants will be housed together in a formaldehyde-rich environment — normally toxic to the plants — and tested for their ability to survive. Next year, the prize will go to the design of the best drought-resistant cress, and participants will also be invited to improve on winning designs from previous contests.

Masayuki Yamamura, a bioinformatics researcher at the Tokyo Institute of Technology, whose group received gold medals from iGEM in 2007, 2008 and 2009, believes that GenoCon will make a huge contribution to synthetic biology, both in Japan and internationally. He points out that because iGEM's parts registry is open access, the sequences cannot be used in patents. This has deterred the biotech industry from getting deeply involved in iGEM, argues Yamamura: "Those from industry have mostly just been looking on from the sidelines."

By contrast, GenoCon is "expecting small-scale business groups and university people with patented DNA sequences to use our platform to find much more optimized versions of the sequences claimed in the patent", Toyoda says. Results will normally be made public, but participating companies will have the option to keep sequences secret if they are negotiating joint patent or licensing agreements with other businesses. "This framework is what we call open-optimization research," says Toyoda. Randy Rettberg, director of iGEM, declined to comment on the GenoCon competition.

Talent scouting

The organizers hope that GenoCon will attract budding scientists through its separate category for high-school students. Yutaka Mizokami, a biology teacher at the Yokohama Science Frontier High School (see 'Reading, writing and nanofabrication'), says that he expects several teams from his school to join, and thinks that most of the other 125 Super Science High Schools in Japan (which are given extra funding to accelerate science teaching) will also put up teams.

Adam Arkin, a bioengineering expert based at the University of California, Berkeley, and at the Lawrence Berkeley National Laboratory, says that GenoCon "beautifully refocuses students and their mentors on the design aspects of synthetic biology".

Arkin is also co-director of the International Open Facility Advancing Biotechnology (BIOFAB), based at the Joint BioEnergy Institute in Emeryville, which bills itself as "the world's first biological design-build facility". He and other BIOFAB scientists are helping to coordinate another nascent synthetic-biology competition to improve biological parts, called Critical Assessment of Genetically Engineering Networks (CAGEN), which will see its first competition run until 2012.

"This constellation of competitions — iGEM, CAGEN and GenoCon — will drive a great deal of international conversation and collaboration, and this can only be stimulating for the field as a whole," says Arkin.

From Nature News
http://www.nature.com/news/2010/100602/full/news.2010.271.html

Research news at Cambridge University

Run mouse over list to see previews, click for full article.

European Association of Students & Postdocs in Synthetic Biology (EUSynBioS)

EUSynBioSprelimLogo240The European Association of Students & Postdocs in Synthetic Biology (EUSynBioS) invites you to join its pre-launch community. The EUSynBioS initiative seeks to shape and foster a network of young researchers active the nascent scientific discipline of synthetic biology within the European Union by means of providing an integrative central resource for interaction and professional development.

Key objectives of EUSynBioS include i) the implementation of a central web platform for sharing news and opportunities relevant to members of the community as well as for academic networking, ii) the arrangement and support of events for academic exchange and professional development, iii) liaison with representatives of industry, and iv) establishment of a primary contact for collaboration and exchange with related communities of synthetic biology students and postdocs abroad.

Registering as a member is free and can be completed within 30 seconds via the following link http://www.eusynbios.org/students-and-postdocs/join Students and postdocs who register as a EUSynBioS member will be able to:
o Access a large network of young researchers in synthetic biology for academic collaboration and exchange
o Share technical resources and teaching materials
o Stay informed about relevant events such as conferences, workshops, or social outings o Browse relevant jobs in academia and industry
o Use site visits and mentoring opportunities to interact with prospective employers
o Connect with members of related communities all over the world

By registering as a member prior to the official launch of EUSynBioS, you will not only make a statement of support which will have an impact on the resources available to the community in the future; you will also be given the chance to actively shape EUSynBioS right from the start, and have an edge when applying for a position on the Steering Committee. We are looking forward to your joining us ! Christian Boehm, University of Cambridge.