Cambridge website for Synthetic Biology Resources
 
synbio logo2_100a

Compiled by Jim Haseloff at the University of Cambridge
This site contains details of recent papers and activity in Synthetic Biology, with particular emphasis on: (i) development of standards in biology and DNA parts, (ii) microbial and (iii) plant systems, (iv) research and teaching in the field at the University of Cambridge, (v) hardware for scientific computing and instrumentation, (vi) tools for scientific productivity and collected miscellany. 

 

www.synbio.org.uk

SpannerPlantLogo70 logoplate70  

SynBio calendar

  • 18 Feb

    Technology is driving revolutionary changes in biology. Over the past decade, scientists and engineers have begun to define the path forward in the genomic era. Systems Biology has arisen...

  • 17 Mar

    Now that we know the sequences of many genomes, from a wide variety of organisms and even from individuals with unique characteristics, many researchers have turned to making intentional...

  • 09 Apr

    The developments within synthetic biology promise to change the world in significant ways. Yet synthetic biology is largely unrecognized within conservation. The purpose of the meeting...

  • 09 Jun

    (Re-)constructing and Re-programming Life This conference will provide an in-depth discussion forum among practitioners of the various fields underlying Synthetic Biology. It aims to...

  • 09 Jul

    The BioBricks Foundation is pleased to announce The BioBricks Foundation Synthetic Biology 6.0 Conference (SB6.0), which will take place on July 9-11, 2013 at Imperial College, London,...

  • 30 Jul

    This course will focus on how the complexity of biological systems, combined with traditional engineering approaches, results in the emergence of new design principles for synthetic...

18 Feb - 23 Mar
09 Apr - 15 Jun
09 Jul - 13 Aug

SynBio Google newsfeed

Loading...
Synbio news:
17 Jul 2011

Rewiring cells: synthetic biology as a tool to interrogate the organizational principles of living systems.

Bashor CJHorwitz AAPeisajovich SGLim WA.

Source

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158-2517, USA.

Annu Rev Biophys. 2010 Jun 9;39:515-37.

Abstract

The living cell is an incredibly complex entity, and the goal of predictively and quantitatively understanding its function is one of the next great challenges in biology. Much of what we know about the cell concerns its constituent parts, but to a great extent we have yet to decode how these parts are organized to yield complex physiological function. Classically, we have learned about the organization of cellular networks by disrupting them through genetic or chemical means. The emerging discipline of synthetic biology offers an additional, powerful approach to study systems. By rearranging the parts that comprise existing networks, we can gain valuable insight into the hierarchical logic of the networks and identify the modular building blocks that evolution uses to generate innovative function. In addition, by building minimal toy networks, one can systematically explore the relationship between network structure and function. Here, we outline recent work that uses synthetic biology approaches to investigate the organization and function of cellular networks, and describe a vision for asynthetic biology toolkit that could be used to interrogate the design principles of diverse systems.

PMID: 20192780 PubMed - indexed for MEDLINE] 

PMCID: PMC2965450

PhD Studies in Cambridge

The Board of Graduate Studies manages admission of the University's graduate students. Prospective students should start here - for an introduction to the University of Cambridge, the courses we offer, how to apply for postgraduate study, how your application will be processed, and immigration and other important information.

Click here for more information about Cambridge

 

Weather in Cambridge

°F°C
CAMBRIDGE
invalid location provided