Friday, December 31, 2010
   
Text Size
Latest:

Reversal of an epigenetic switch governing cell chaining in Bacillus subtilis by protein instability.

Reversal of an epigenetic switch governing cell chaining in Bacillus subtilis by protein instability.: "Publication Date: 2010 Oct PMID: 20923420
Authors: Chai, Y. - Kolter, R. - Losick, R.
Journal: Mol Microbiol

Bacillus subtilis forms long chains of cells during growth and biofilm formation. Cell separation is mediated by autolysins, whose genes are under the negative control of a heteromeric complex composed of the proteins SinR and SlrR. Formation of the SinR-SlrR complex is governed by a self-reinforcing, double-negative feedback loop in which SinR represses the gene for SlrR and SlrR, by forming the SinR-SlrR complex, titrates SinR and prevents it from repressing slrR. The loop is a bistable switch and exists in a SlrR(LOW) state in which autolysin genes are on, and a SlrR(HIGH) state in which autolysin genes are repressed by SinR-SlrR. Cells in the SlrR(LOW) state are driven into the SlrR(HIGH) state by SinI, an antirepressor that binds to and inhibits SinR. However, the mechanism by which cells in the SlrR(HIGH) state revert back to the SlrR(LOW) state is unknown. We report that SlrR is proteolytically unstable and present evidence that self-cleavage via a LexA-like autopeptidase and ClpC contribute to its degradation. Cells producing a self-cleavage-resistant mutant of SlrR exhibited more persistent chaining during growth and yielded biofilms with enhanced structural complexity. We propose that degradation of SlrR allows cells to switch from the SlrR(HIGH) to the SlrR(LOW) state.

(Via Molecular Microbiology.)