Cambridge website for Synthetic Biology Resources
 
synbio logo2_100a

Compiled by Jim Haseloff at the University of Cambridge
This site contains details of recent papers and activity in Synthetic Biology, with particular emphasis on: (i) development of standards in biology and DNA parts, (ii) microbial and (iii) plant systems, (iv) research and teaching in the field at the University of Cambridge, (v) hardware for scientific computing and instrumentation, (vi) tools for scientific productivity and collected miscellany. 

 

www.synbio.org.uk

SpannerPlantLogo70 logoplate70  

SynBio calendar

  • 18 Feb

    Technology is driving revolutionary changes in biology. Over the past decade, scientists and engineers have begun to define the path forward in the genomic era. Systems Biology has arisen...

  • 17 Mar

    Now that we know the sequences of many genomes, from a wide variety of organisms and even from individuals with unique characteristics, many researchers have turned to making intentional...

  • 09 Apr

    The developments within synthetic biology promise to change the world in significant ways. Yet synthetic biology is largely unrecognized within conservation. The purpose of the meeting...

  • 09 Jun

    (Re-)constructing and Re-programming Life This conference will provide an in-depth discussion forum among practitioners of the various fields underlying Synthetic Biology. It aims to...

  • 09 Jul

    The BioBricks Foundation is pleased to announce The BioBricks Foundation Synthetic Biology 6.0 Conference (SB6.0), which will take place on July 9-11, 2013 at Imperial College, London,...

  • 30 Jul

    This course will focus on how the complexity of biological systems, combined with traditional engineering approaches, results in the emergence of new design principles for synthetic...

18 Feb - 23 Mar
09 Apr - 15 Jun
09 Jul - 13 Aug

SynBio Google newsfeed

Loading...
Synbio news:
20 Sep 2011

MicroRNAs from plants accumulate in mammalian blood and tissues, where they can regulate gene expression.

By Cristina Luiggi | September 20, 2011 at: 

http://the-scientist.com/2011/09/20/plant-rnas-found-in-mammals/

Dreamstime.com, Rewat Wannasuk

DREAMSTIME.COM, REWAT WANNASUK
MicroRNAs from common plant crops such as rice and cabbage can be found in the blood and tissues of humans and other plant-eating mammals, according to a study published today in Cell Research. One microRNA in particular, MIR168a, which is highly enriched in rice, was found to inhibit a protein that helps removes low-density lipoprotein (LDL) from the blood, suggesting that microRNAs can influence gene expression across kingdoms.
“This is a very exciting piece of work that suggests that the food we eat may directly regulate gene expression in our bodies,” said Clay Marsh, Director of the Center for Personalized Health Care at the Ohio State University College of Medicine who researches microRNA expression in human blood but who was not involved in the study.MicroRNAs are, as the name implies, very short RNA sequences (approximately 22 nucleotides in length) discovered in the early 1990s. They are known to modulate gene expression by binding to mRNA, often resulting in inhibition. With the recent discovery that microRNAs circulate the blood by hitching a ride in small membrane-encased particles known as microvesicles (see our July 2011 feature on microvesicles,“Exosome Explosion”), there has been a surge of interest in microRNAs as a novel class of biomarkers for a variety of diseases.Chen-Yu Zhang, a molecular biologist at Nanjing University in China, was studying the role of circulating microRNAs in health and disease when he discovered that microRNAs are present in other bodily fluids such as milk. This gave him the “crazy idea” that exogenous microRNAs, such as those ingested through the consumption of milk, could also be found circulating in the serum of mammals, he recalled.To test his hypothesis, Zhang and his team of researchers sequenced the blood microRNAs of 31 healthy Chinese subjects and searched for the presence of plant microRNAs. Because plant microRNAs are structurally different from those of mammals, they react differently to oxidizing agents, and the researchers were able to differentiate the two by treating them with sodium periodate, which oxidizes mammal but not plant microRNAs.To their surprise, they found about 40 types of plant microRNAs circulating in the subjects’ blood—some of which were found in concentrations that were comparable to major endogenous human microRNAs.The plant microRNAs with the highest concentrations were MIR156a and MIR168a, both of which are known to be enriched in rice and cruciferous vegetables such as cauliflower, cabbage, and broccoli. Furthermore, the researchers detected the two microRNAs in the blood, lungs, small intestine, and livers of mice, in variable concentrations that significantly increased after the mice were fed raw rice (although cooked rice was also shown to contain intact MIR168a).Next, the researchers scoured sequence databases for putative target genes of MIR156a and MIR168a and found that MIR168a shared sequence complementarity with approximately 50 mammalian genes. The most highly conserved of these sequences across the animal kingdom was the exon 4 of the low-density lipoprotein receptor adapter protein 1 gene (LDLRAP1).LDLRAP1 is highly expressed in the liver, where it interacts with the low-density lipoprotein receptor to help remove low-density lipoprotein (LDL), aka “bad” cholesterol, from the blood.The researchers hypothesized that MIR168a could be taken up by the epithelial cells lining the gastrointestinal tract, packaged into microvesicles, and secreted into the blood stream, where they can make their way to target organs. Once in the liver, MIR168a binds to LDLRAP1 mRNA, reducing the protein levels and ultimately impairing the removal of LDL from the blood.To test this hypothesis in vitro, the researchers transfected synthetic MIR168a into a human epithelial cell line and collected the secreted microvesicles. When they added these microvesicles to a liver cell line called HepG2, they found that while it did not change the levels of LDLRAP1 mRNA, it did decrease the levels of the actual LDLRAP1 protein.Likewise, the LDLRAP1 protein level decreased in the livers of live mice 3 to 7 days after eating fresh rice or being injected with synthetic MIR168a—significantly increasing LDL in the blood. When the researchers injected the mice with an RNA sequence that bound to and neutralized MIR168a, the protein and LDL levels returned to normal.“This microRNA inhibits this protein and increased the plasma LDL levels,” Zhang said. With higher levels of circulating cholesterol, “it can possibly increase the risk of metabolic syndrome,” he added. But more importantly, this research points to a “new therapeutic strategy for the treatment of diseases,” based on the enhancement or inhibition of exogenous microRNAs.Although the team has still a long way to go in elucidating the mechanisms by which plant microRNAs can regulate gene expression in humans, these initial results promise to increase the understanding of how specific ingredients in food can mediate health and disease, Marsh said.Indeed, Zhang suspects that this is just one example of many. With time, “I’m confident other people will find more exogenous plant microRNAs that can pass through the GI tract and also have effects on the host physiology,” Zhang said.L. Zhang, et. al., “Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA,” Cell Research, doi:10.1038/cr.2011.158, 2011.

PhD Studies in Cambridge

The Board of Graduate Studies manages admission of the University's graduate students. Prospective students should start here - for an introduction to the University of Cambridge, the courses we offer, how to apply for postgraduate study, how your application will be processed, and immigration and other important information.

Click here for more information about Cambridge

 

Weather in Cambridge

°F°C
CAMBRIDGE
invalid location provided